Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions
نویسندگان
چکیده
Physical attacks on cryptographic implementations and devices have become crucial. In this context a recent line of research on a new class of side-channel attacks, called memory attacks, has received increasingly more attention. These attacks allow an adversary to measure a significant fraction of secret key bits directly from memory, independent of any computational side-channels. Physically Unclonable Functions (PUFs) represent a promising new technology that allows to store secrets in a tamper-evident and unclonable manner. PUFs enjoy their security from physical structures at submicron level and are very useful primitives to protect against memory
منابع مشابه
Asynchronous Physical Unclonable Functions - AsyncPUF
Physically Unclonable Functions (PUFs) exploit the physical characteristics of silicon and provide an alternative to storing digital encryption keys in non-volatile memory. A PUF maps a unique set of digital inputs to a corresponding set of digital outputs. In this paper, the use of asynchronous logic and design techniques to implement PUFs is advocated for Asynchronous Physically Unclonable Fu...
متن کاملCoalition Resistant Anonymous Broadcast Encryption Scheme Based on PUF
We describe a broadcast encryption system with revocation, where security is based on PUF (Physical Unclonable Function) instead of a cryptographic problem. Our scheme is immune to advances of cryptography (which may suddenly ruin any system depending solely of cryptographic assumptions). It is resilient to collusion attacks, which are frequently the Achilles’ heel of schemes based on cryptogra...
متن کاملLeakage Resilient IBE and IPE schemes
We construct identity-based encryption (IBE) and inner product encryption (IPE) schemes under the decision linear (DLIN) or symmetric external Diffie-Hellman (SXDH) assumptions. Their private user keys are leakage-resilient in several scenarios. In particular, • In the bounded memory leakage model (Akavia et al., TCC ’09), our basic schemes reach the maximum-possible leakage rate 1− o(1). • In ...
متن کاملLeakage-Resilient Tweakable Encryption from One-Way Functions
In this paper, we initiate the study of leakage-resilient tweakable encryption schemes in the relative key-leakage model, where the adversary can obtain (arbitrary) partial information about the secret key. We also focus on the minimal and generic assumptions needed to construct such a primitive. Interestingly, we show provably secure constructions of leakage-resilient (LR) tweakable encryption...
متن کاملPublic-Key Cryptosystems Resilient to Continuous Tampering and Leakage of Arbitrary Functions
We present the first chosen-ciphertext secure public-key encryption schemes resilient to continuous tampering of arbitrary (efficiently computable) functions. Since it is impossible to realize such a scheme without a self-destruction or key-updating mechanism, our proposals allow for either of them. As in the previous works resilient to this type of tampering attacks, our schemes also tolerate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009